educating the evolved mind: education

The previous two posts have been about David Geary’s concepts of primary and secondary knowledge and abilities; evolved minds and intelligence.  This post is about how Geary applies his model to education in Educating the Evolved Mind.

There’s something of a mismatch between the cognitive and educational components of Geary’s model.  The cognitive component is a range of biologically determined functions that have evolved over several millennia.  The educational component is a culturally determined education system cobbled together in a somewhat piecemeal and haphazard fashion over the past century or so.

The education system Geary refers to is typical of the schooling systems in developed industrialised nations, and according to his model, focuses on providing students with biologically secondary knowledge and abilities. Geary points out that many students prefer to focus on biologically primary knowledge and abilities such as sports and hanging out with their mates (p.52).   He recognises they might not see the point of what they are expected to learn and might need its importance explained to them in terms of social value (p.56). He suggests ‘low achieving’ students especially might need explicit, teacher driven instruction (p.43).

You’d think, if cognitive functions have been biologically determined through thousands of years of evolution, that it would make sense to adapt the education system to the cognitive functions, rather then the other way round. But Geary doesn’t appear to question the structure of the current US education system at all; he accepts it as a given. I suggest that in the light of how human cognition works, it might be worth taking a step back and re-thinking the education system itself in the light of the following principles:

1.communities need access to expertise

Human beings have been ‘successful’, in evolutionary terms, mainly due to our use of language. Language means it isn’t necessary for each of us to learn everything for ourselves from scratch; we can pass on information to each other verbally. Reading and writing allow knowledge to be transmitted across time and space. The more knowledge we have as individuals and communities, the better our chances of survival and a decent quality of life.

But, although it’s desirable for everyone to be proficient reader and writer and to have an excellent grasp of collective human knowledge, that’s not necessary in order for each of us to have a decent quality of life. What each community needs is a critical mass of people with good knowledge and skills.

Also, human knowledge is now so vast that no one can be an expert on everything; what’s important is that everyone has access to the expertise they need, when and where they need it.  For centuries, communities have facilitated access to expertise by educating and training experts (from carpenters and builders to doctors and lawyers) who can then share their expertise with their communities.

2.education and training is not just for school

Prior to the development of mass education systems, most children’s and young people’s education and training would have been integrated into the communities in which they lived. They would understand where their new knowledge and skills fitted into the grand scheme of things and how it would benefit them, their families and others. But schools in mass education systems aren’t integrated into communities. The education system has become its own specialism. Children and young people are withdrawn from their community for many hours to be taught whatever knowledge and skills the education system thinks fit. The idea that good exam results will lead to good jobs is expected to provide sufficient motivation for students to work hard at mastering the school curriculum.  Geary recognises that it doesn’t.

For most of the millennia during which cognitive functions have been developing, children and young people have been actively involved in producing food or making goods, and their education and training was directly related to those tasks. Now it isn’t.  I’m not advocating a return to child labour; what I am advocating is ensuring that what children and young people learn in school is directly and explicitly related to life outside school.

Here’s an example: A highlight of the Chemistry O level course I took many years ago was a visit to the nearby Avon (make-up) factory. Not only did we each get a bag of free samples, but in the course of an afternoon the relevance of all that rote learning of industrial applications, all that dry information about emulsions, fat-soluble dyes, anti-fungal additives etc. suddenly came into sharp focus. In addition, the factory was a major local employer and the Avon distribution network was very familiar to us, so the whole end-to-end process made sense.

What’s commonly referred to as ‘academic’ education – fundamental knowledge about how the world works – is vital for our survival and wellbeing as a species. But knowledge about how the world works is also immensely practical. We need to get children and young people out, into the community, to see how their communities apply knowledge about how the world works, and why it’s important. The increasing emphasis in education in the developed world on paper-and-pencil tests, examination results and college attendance is moving the education system in the opposite direction, away from the practical importance of extensive, robust knowledge to our everyday lives.  And Geary appears to go along with that.

3.(not) evaluating the evidence

Broadly speaking, Geary’s model has obvious uses for teachers.   There’s considerable supporting evidence for a two-phase model of cognition ranging from Fodor’s specialised, stable/general, unstable distinction, to the System 1/System 2 model Daniel Kahnemann describes in Thinking, Fast and Slow. Whether the difference between Geary’s biologically primary and secondary knowledge and abilities is as clear-cut as he claims, is a different matter.

It’s also well established that in order to successfully acquire the knowledge usually taught in schools, children need the specific abilities that are measured by intelligence tests; that’s why the tests were invented in the first place. And there’s considerable supporting evidence for the reliability and predictive validity of intelligence tests. They clearly have useful applications in schools. But it doesn’t follow that what we call intelligence or g (never mind gF or gC) is anything other than a construct created by the intelligence test.

In addition, the fact that there is evidence that supports Geary’s claims doesn’t mean all his claims are true. There might also be considerable contradictory evidence; in the case of Geary’s two-phase model the evidence suggests the divide isn’t as clear-cut as he suggests, and the reification of intelligence has been widely critiqued. Geary mentions the existence of ‘vigorous debate’ but doesn’t go into details and doesn’t evaluate the evidence by actually weighing up the pros and cons.

Geary’s unquestioning acceptance of the concepts of modularity, intelligence and education systems in the developed world, increases the likelihood that teachers will follow suit and simply accept Geary’s model as a given. I’ve seen the concepts of biologically primary and secondary knowledge and abilities, crystallised intelligence (gC) and fluid intelligence (gF), and the idea that students with low gF who struggle with biologically secondary knowledge just need explicit direct instruction, all asserted as if they must be true – presumably because an academic has claimed they are and cited evidence in support.

This absence of evaluation of the evidence is especially disconcerting in anyone who emphasises the importance of teachers becoming research-savvy and developing evidence-based practice, or who posits models like Geary’s in opposition to the status quo. The absence of evaluation is also at odds with the oft cited requirement for students to acquire robust, extensive knowledge about a subject before they can understand, apply, analyse, evaluate or use it creatively. That requirement applies only to school children, it seems.

references

Fodor, J (1983).  The modularity of mind.  MIT Press.

Geary, D (2007).  Educating the evolved mind: Conceptual foundations for an evolutionary educational psychology, in Educating the evolved mind: Conceptual foundations for an evolutionary educational psychology, JS Carlson & JR Levin (Eds). Information Age Publishing.

Kahneman, D (2012).  Thinking, fast and slow.   Penguin.

evolved minds and education: intelligence

The second vigorously debated area that Geary refers to in Educating the Evolved Mind is intelligence. In the early 1900s statistician Charles Spearman developed a technique called factor analysis. When he applied it to measures of a range of cognitive abilities he found a strong correlation between them, and concluded that there must be some underlying common factor that he called general intelligence (g). General intelligence was later subdivided into crystallised intelligence (gC) resulting from experience, and fluid intelligence (gF) representing a ‘biologically-based ability to acquire skills and knowledge’ (p.25). The correlation has been replicated many times and is reliable –  at the population level, at least.  What’s also reliable is the finding that intelligence, as Robert Plomin puts it “is one of the best predictors of important life outcomes such as education, occupation, mental and physical health and illness, and mortality”.

The first practical assessment of intelligence was developed by French psychologist Alfred Binet, commissioned by his government to devise a way of identifying the additional needs of children in need of remedial education. Binet first published his methods in 1903, the year before Spearman’s famous paper on intelligence. The Binet-Simon scale (Theodore Simon was Binet’s assistant) was introduced to the US and translated into English by Henry H Goddard. Goddard had a special interest in ‘feeble-mindedness’ and used a version of Binet’s scale for a controversial screening test for would-be immigrants. The Binet-Simon scale was standardised for American children by Lewis Terman at Stanford University and published in 1916 as the Stanford-Binet test. Later, the concept of intelligence quotient (IQ – mental age divided by chronological age and multiplied by 100) was introduced, and the rest, as they say, is history.

what’s the correlation?

Binet’s original scale was used to identify specific cognitive difficulties in order to provide specific remedial education. Although it has been superseded by tests such as the Wechsler Intelligence Scale for Children (WISC), what all intelligence tests have in common is that they contain a number of sub-tests that test different abilities. The 1905 Stanford-Binet scale had 30 sub-tests and the WISC-IV has 15. Although the scores in sub-tests tend to be strongly correlated, Early Years teachers, Educational Psychologists and special education practitioners will be familiar with the child with the ‘spiky profile’ who has high scores on some sub-tests but low ones on others. Their overall IQ might be average, but that can mask considerable variation in cognitive sub-skills. Deidre Lovecky, who runs a resource centre in Providence Rhode Island for gifted children with learning difficulties, reports in her book Different Minds having to essentially pick ‘n’ mix sub-tests from different assessment instruments because children were scoring at ceiling on some sub-tests and at floor on others. In short, Spearman’s correlation might be true at the population level, but it doesn’t hold for some individuals. And education systems have to educate individuals.

is it valid?

A number of issues have been vigorously debated in relation to intelligence. One is its construct validity. There’s no doubt intelligence tests measure something – but whether that something is a single biologically determined entity is another matter. We could actually be measuring several biologically determined functions that are strongly dependent on each other. Or some biologically determined functions interacting with culturally determined ones. As the psychologist Edwin Boring famously put it way back in 1923 “intelligence is what the tests test”, ie intelligence is whatever the tests test.

is it cultural?

Another contentious issue is the cultural factors implicit in the tests.  Goddard attempted to measure the ‘intelligence’ of European immigrants using sub-tests that included items culturally specific to the USA.  Stephen Jay Gould goes into detail in his criticism of this and other aspects of intelligence research in his book The Mismeasure of Man.  (Gould himself has been widely criticised so be aware you’re venturing into a conceptual minefield.)  You could just about justify culture-specificity in tests for children who had grown up in a particular culture, on the grounds that understanding cultural features contributed to overall intelligence. But there are obvious problems with the conclusions that can be drawn about gF in the case of children whose cultural background might be different.

I’m not going to venture in to bell-curve territory because the vigorous debate in that area is due to how intelligence tests are applied, rather than the content of the tests. Suffice it to say that much of the controversy about application has arisen because of assumptions made about what intelligence tests tell us. The Wikipedia discussion of Herrnstein & Murray’s book is a good starting point if you’re interested in following this up.

multiple intelligences?

There’s little doubt that intelligence tests are valid and reliable measures of the core abilities required to successfully acquire the knowledge and skills taught in schools in the developed industrialised world; knowledge and skills that are taught in schools because they are valued in the developed industrialised world.

But as Howard Gardner points out in his (also vigorously debated) book Frames of mind: The theory of multiple intelligences, what’s considered to be intelligence in different cultures depends on what abilities are valued by different cultures. In the developed industrialised world, intelligence is what intelligence tests measure. If, on the other hand, you live on a remote Pacific Island and are reliant for your survival on your ability to catch fish and navigate across the ocean using only the sun, moon and stars for reference, you might value other abilities. What would those abilities tell you about someone’s ‘intelligence’? Many people place a high value on the ability to kick a football, sing in tune or play stringed instruments; what do those abilities tell you about ‘intelligence’?

it’s all about the constructs

If intelligence tests are a good measure of the abilities necessary for learning what’s taught in school, then fine, let’s use them for that purpose. What we shouldn’t be using them for is drawing conclusions about a speculative entity we’ve named ‘intelligence’. Or assuming, on the basis of those tests, that we can label some people more or less ‘intelligent’ than others, as Geary does e.g.

Intelligent individuals identify and apprehend bits of social and ecological information more easily and quickly than do other people” (p.26)

and

Individuals with high IQ scores learned the task more quickly than their less-
intelligent peers” (p.59)

 

What concerned me most about Geary’s discussion of intelligence wasn’t what he had to say about accuracy and speed of processing, or about the reliability and predictive validity of intelligence tests, which are pretty well supported. It was the fact that he appears to accept the concepts of g, gC and gF without question. And the ‘vigorous debate’ that’s raged for over a century is reduced to ‘details to be resolved’ (p.25) which doesn’t quite do justice to the furore over the concept, or the devastation resulting from the belief that intelligence is a ‘thing’.  Geary’s apparently unquestioning acceptance of intelligence brings me to the subject of the next post; his model of the education system.

 

References

Gardner, H (1983). Frames of Mind: The theory of multiple intelligences. Fontana (1993).

Geary, D (2007).  Educating the evolved mind: Conceptual foundations for an evolutionary educational psychology, in Educating the evolved mind: Conceptual foundations for an evolutionary educational psychology, JS Carlson & JR Levin (Eds). Information Age Publishing.

Gould, SJ (1996).  The Mismeasure of Man.  WW Norton.

Lovecky, D V (2004).  Different minds: Gifted children with AD/HD, Asperger Syndrome and other learning deficits.  Jessica Kingsley.