magic beans, magic bullets and crypto-pathologies

In the previous post, I took issue with a TES article that opened with fidget-spinners and closed with describing dyslexia and ADHD as ‘crypto-pathologies’. Presumably as an analogy with cryptozoology – the study of animals that exist only in folklore. But dyslexia and ADHD are not the equivalent of bigfoot and unicorns.

To understand why, you have to unpack what’s involved in diagnosis.

diagnosis, diagnosis, diagnosis

Accurate diagnosis of health problems has always been a challenge because:

  • Some disorders* are difficult to diagnose. A broken femur, Bell’s palsy or measles are easier to figure out than hypothyroidism, inflammatory bowel disease or Alzheimer’s.
  • It’s often not clear what’s causing the disorder. Fortunately, you don’t have to know the immediate or root causes for successful treatment to be possible. Doctors have made the reasonable assumption that patients presenting with the same signs and symptoms§ are likely to have the same disorder.

Unfortunately, listing the signs and symptoms isn’t foolproof because;

  • some disorders produce different signs and symptoms in different patients
  • different disorders can have very similar signs and symptoms.

some of these disorders are not like the others…

To complicate the picture even further, some signs and symptoms are qualitatively different from the aches, pains, rashes or lumps that indicate disorders obviously located in the body;  they involve thoughts, feelings and behaviours instead. Traditionally, human beings have been assumed to consist of a physical body and non-physical parts such as mind and spirit, which is why disorders of thoughts, feelings and behaviours were originally – and still are – described as mental disorders.

Doctors have always been aware that mind can affect body and vice versa. They’ve also long known that brain damage and disease can affect thoughts, feelings, behaviours and physical health. In the early 19th century, mental disorders were usually identified by key symptoms. The problem was that the symptoms of different disorders often overlapped. A German psychiatrist, Emil Kraepelin, proposed instead classifying mental disorders according to syndromes, or patterns of co-occurring signs and symptoms. Kraepelin hoped this approach would pave the way for finding the biological causes of disorders. (In 1906, Alois Alzheimer found the plaques that caused the dementia named after him, while he was working in Kraepelin’s lab.)

Kraepelin’s approach laid the foundations for two widely used modern classification systems for mental disorders; the Diagnostic and Statistical Manual of Mental Disorders, published by the American Psychiatric Association, currently in its 5th edition (DSM V), and the International Classification of Diseases Classification of Mental and Behavioural Disorders published by the World Health Organisation, currently in its 10th edition (ICD-10).

Kraepelin’s hopes for his classification system have yet to be realised. That’s mainly because the brain is a difficult organ to study. You can’t poke around in it without putting your patient at risk. It’s only in the last few decades that scanning techniques have enabled researchers to look more closely at the structure and function of the brain, and the scans require interpretation –  brain imaging is still in its infancy.

you say medical, I say experiential

Kraepelin’s assumptions about distinctive patterns of signs and symptoms, and about their biological origins, were reasonable ones. His ideas, however, were almost the polar opposite to those of his famous contemporary, Sigmund Freud, who located the root causes of mental disorders in childhood experience. The debate has raged ever since. The dispute is due to the plasticity of the brain.  Brains change in structure and function over time and several factors contribute to the changes;

  • genes – determine underlying structure and function
  • physical environment e.g. biochemistry, nutrients, toxins – affects structure and function
  • experience – the brain processes information, and information changes the brain’s physical structure and biochemical function.

On one side of the debate is the medical model; in essence, it assumes that the causes of mental disorders are primarily biological, often due to a ‘chemical imbalance’. There’s evidence to support this view; medication can improve a patient’s symptoms. The problem with the medical model is that it tends to assume;

  • a ‘norm’ for human thought, feelings and behaviours – disorders are seen as departures from that norm
  • the cause of mental disorders is biochemical and the chemical ‘imbalance’ is identified (or not) through trial-and-error – errors can be catastrophic for the patient.
  • the cause is located in the individual.

On the other side of the debate is what I’ll call the experiential model (often referred to as anti-psychiatry or critical psychiatry). In essence it assumes the causes of unwanted thoughts, feelings or behaviours are primarily experiential, often due to adverse experiences in childhood. The problem with that model is that it tends to assume;

  • the root causes are experiential and not biochemical
  • the causes are due to the individual’s response to adverse experiences
  • first-hand reports of early adverse experiences are always reliable, which they’re not.


Kraepelin’s classification system wasn’t definitive – it couldn’t be, because no one knew what was causing the disorders. But it offered the best chance of identifying distinct mental health problems – and thence their causes and treatments. The disorders identified in Kraepelin’s system, the DSM and ICD, were – and most still are – merely labels given to clusters of co-occurring signs and symptoms.  People showing a particular cluster are likely to share the same underlying biological causes, but that doesn’t mean they do share the same underlying causes or that the origin of the disorder is biological.

This is especially true for signs and symptoms that could have many causes. There could be any number of reasons for someone hallucinating, withdrawing, feeling depressed or anxious – or having difficulty learning to read or maintain attention.  They might not have a medical ‘disorder’ as such. But you wouldn’t know that to read through the disorders listed in the DSM or ICD. They all look like bona fide, well-established medical conditions, not like labels for bunches of symptoms that sometimes co-occur and sometimes don’t, and that have a tendency to appear or disappear with each new edition of the classification system.  That brings us to the so-called ‘crypto-pathologies’ referred to in the TES article.

Originally, terms like dyslexia were convenient and legitimate shorthand labels for specific clusters of signs or symptoms. Dyslexia means difficulty with reading, as distinct from alexia which means not being able to read at all; both problems can result from stroke or brain damage. Similarly, autism was originally a shorthand term for the withdrawn state that was one of the signs of schizophrenia – itself a label.  Delusional parasitosis is also a descriptive label (the parasites being what’s delusional, not the itching).


What’s happened over time is that many of these labels have become reified – they’ve transformed from mere labels into disorders widely perceived as having an existence independent of the label. Note that I’m not saying the signs and symptoms don’t exist. There are definitely children who struggle with reading regardless of how they’ve been taught; with social interaction regardless of how they’ve been brought up; and with maintaining focus regardless of their environment. What I am saying is that there might be different causes, or multiple causes, for clusters of very similar signs and symptoms.  Similar signs and symptoms don’t mean that everybody manifesting those signs and symptoms has the same underlying medical disorder –  or even that they have a medical disorder at all.

The reification of labels has caused havoc for decades with research. If you’ve got a bunch of children with different causes for their problems with reading, but you don’t know what the different causes are so you lump all the children together according to their DSM label; or another bunch with different causes for their problems with social interaction but lump them all together; or a third bunch with different causes for their problems maintaining focus, but you lump them all together; you are not likely to find common causes in each group for the signs and symptoms.  It’s this failure to find distinctive features at the group level that has been largely responsible for claims that dyslexia, autism or ADHD ‘don’t exist’, or that treatments that have evidently worked for some individuals must be spurious because they don’t work for other individuals or for the heterogeneous group as a whole.


Oddly, in his TES article, Tom refers to autism as an ‘identifiable condition’ but to dyslexia and ADHD as ‘crypto-pathologies’ even though the diagnostic status of autism in the DSM and ICD is on a par with that of ADHD, and with ‘specific learning disorder with impairment in reading‘ with dyslexia recognised as an alternative term (DSM), or ‘dyslexia and alexia‘ (ICD).  Delusional parasitosis, despite having the same diagnostic status and a plausible biological mechanism for its existence, is dismissed as ‘a condition that never was’.

Tom is entitled to take a view on diagnosis, obviously. He’s right to point out that reading difficulties can be due to lack of robust instruction, and inattention can be due to the absence of clear routines. He’s right to dismiss faddish simplistic (but often costly) remedies. But the research is clear that children can have difficulties with reading due to auditory and/or visual processing impairments (search Google scholar for ‘dyslexia visual auditory’), that they can have difficulties maintaining attention due to low dopamine levels – exactly what Ritalin addresses (Iversen, 2006), or that they can experience intolerable itching that feels as if it’s caused by parasites.

But Tom doesn’t refer to the research, and despite provisos such as acknowledging that some children suffer from ‘real and grave difficulties’ he effectively dismisses some of those difficulties as crypto-pathologies and implies they can be fixed by robust teaching and clear routines  –  or that they are just imaginary.  There’s a real risk, if the research is by-passed, of ‘robust teaching’ and ‘clear routines’ becoming the magic bullets and magic beans he rightly despises.


*Disorder implies a departure from the norm.  At one time, it was assumed the norm for each species was an optimal set of characteristics.  Now, the norm is statistically derived, based on 95% of the population.

§ Technically, symptoms are indicators of a disorder experienced only by the patient and signs are detectable by others.  ‘Symptoms’ is often used to include both.


Iversen, L (2006).  Speed, Ecstasy, Ritalin: The science of amphetamines.  Oxford University Press.

white knights and imaginary dragons: Tom Bennett on fidget-spinners

I’ve crossed swords – or more accurately, keyboards – with Tom Bennett, the government’s behaviour guru tsar adviser, a few times, mainly about learning styles. And about Ken Robinson. Ironic really, because broadly speaking we’re in agreement. Ken Robinson’s ideas about education are woolly and often appear to be based on opinion rather than evidence, and there’s clear evidence that teachers who use learning styles, thinking hats and brain gym probably are wasting their time. Synthetic phonics helps children read and whole school behaviour policies are essential for an effective school and so on…

My beef with Tom has been his tendency to push his conclusions further than the evidence warrants. Ken Robinson is ‘the butcher given a ticker tape parade by the National Union of Pigs‘.  Learning Styles are ‘the ouija board of serious educational research‘.  What raised red flags for me this time is a recent TES article by Tom prompted by the latest school-toy fad ‘fidget-spinners’.


Tom begins with claims that fidget-spinners can help children concentrate. He says “I await the peer-reviewed papers from the University of Mickey Mouse confirming these claims“, assuming that he knows what the evidence will be before he’s even seen it.  He then introduces the idea that ‘such things’ as fidget-spinners might help children with an ‘identifiable condition such as autism or sensory difficulties’, and goes on to cite comments from several experts about fidget-spinners in particular and sensory toys in general. We’re told “…if children habitually fidget, the correct path is for the teacher to help the child to learn better behaviour habits, unless you’ve worked with the SENCO and the family to agree on their use. The alternative is to enable and deepen the unhelpful behaviour. Our job is to support children in becoming independent, not cripple them with their own ticks [sic]”.

If a child’s fidgeting is problematic, I completely agree that a teacher’s first course of action should be to help them stop fidgeting, although Tom offers no advice about how to do this. I’d also agree that the first course of action in helping a fidgety child shouldn’t be to give them a fidget-toy.

There’s no question that children who just can’t seem to sit still, keep their hands still, or who incessantly chew their sleeves, are seeking sensory stimulation, because that’s what those activities are – by definition. It doesn’t follow that allowing children to walk about, or use fidget or chew toys will ‘cripple them with their own ticks’. These behaviours are not tics, and usually extinguish spontaneously over time. If they’re causing disruption in the classroom, questions need to be asked about school expectations and the suitability of the school provision for the child, not about learning unspecified ‘better behaviour habits’.


Tom then devotes an entire paragraph to, bizarrely, Listerine. His thesis is that sales of antiseptic mouthwash soared due to an advertising campaign persuading Americans that halitosis was a serious social problem. His evidence is a blogpost by Sarah Zhang, a science journalist.  Sarah’s focus is advertising that essentially invented problems to be cured by mouthwash or soap. Neither she nor Tom mention the pre-existing obsession with cleanliness that arose from the discovery – prior to the discovery of antibiotics – that a primary cause of death and debility was bacterial infections that could be significantly reduced by the use of alcohol rubs, boiling and soap.

itchy and scratchy

The Listerine advertising campaign leads Tom to consider ‘fake or misunderstood illnesses’ that he describes as ‘charlatan’. His examples are delusional parasitosis (people believe their skin is itching because it’s infested with parasites) and Morgellon’s (belief that the itching is caused by fibres). Tom says “But there are no fibres or parasites. It’s an entirely psycho-somatic condition. Pseudo sufferers turn up at their doctors scratching like mad, some even cutting themselves to dig out the imaginary threads and crypto-bugs. Some doctors even wearily prescribe placebos and creams that will relieve the “symptoms”. A condition that never was, dealt with by a cure that won’t work. Spread as much by belief as anything else, like fairies.”

Here, Tom is pushing the evidence way beyond its limits. The fact that the bugs or fibres are imaginary doesn’t mean the itching is imaginary. The skin contains several different types of tactile receptor that send information to various parts of the brain. The tactile sensory system is complex so there are several points at which a ‘malfunction’ could occur.  The fact that busy GPs – who for obvious reasons don’t have the time or resources to examine the functioning of a patient’s neural pathways at molecular level – wearily prescribe a placebo, says as much about the transmission of medical knowledge in the healthcare system as it does about patients’ beliefs.


Tom refers to delusional parasitosis and Morgellon’s as ‘crypto-pathologies’ – whatever that means – and then introduces us to some crypto-pathologies he claims are encountered in school; dyslexia and ADHD. As he points out dyslexia and ADHD are indeed labels for ‘a collection of observed symptoms’. He’s right that some children with difficulty reading might simply need good reading tuition, and those with attention problems might simply need a good relationship with their teacher and clear routines. As he points out “…our diagnostic protocol is often blunt. Because we’re unsure what it is we’re diagnosing, and it becomes an ontological problem“.  He then says “This matters when we pump children with drugs like Ritalin to stun them still.

Again, some of Tom’s claims are correct but others are not warranted by the evidence. In the UK, Ritalin is usually prescribed by a paediatrician or psychiatrist after an extensive assessment of the child, and its effects should be carefully monitored. It’s a stimulant that increases available levels of dopamine and norepinephrine and it often enhances the ability to concentrate. It isn’t ‘pumped into’ children and it doesn’t ‘stun them still’, In the UK at least, NICE guidelines indicate it should be used as a last resort. The fact that its use has doubled in the last decade is a worrying trend. This is more likely to be due to the crisis in child and adolescent mental health services, than to an assumption that all attention problems in children are caused by a supposed medical condition we call ADHD.

Tom, rightly, targets bullshit. He says it matters because “many children suffer from very real and very grave difficulties, and it behoves us as their academic and social guardians to offer support and remedy when we can”. Understandably he wants to drive his point home. But superficial analysis and use of hyperbole risk real and grave difficulties being marginalised at best and ridiculed at worst by teachers who don’t have the time/energy/inclination to check out the detail of what he claims.

Specialist education, health and care services for children have been in dire straits for many years and the situation isn’t getting any better. This means teachers are likely to have little information about the underlying causes of children’s difficulties in school. If teachers take what Tom says at face value, there’s a real risk that children with real difficulties, whether they need to move their fingers or chew in order to concentrate, experience unbearable itching, struggle to read because of auditory, visual or working memory impairments, or have levels of dopamine that prevent them from concentrating, will be seen by some as having ‘crypto-conditions’ that can be resolved by good teaching and clear routines. If they’re not resolved, then the condition must be ‘psycho-somatic’.  Using evidence to make some points, but ignoring it to make others means the slings and arrows Tom hurls at the snake-oil salesmen and white knights galloping to save us from imaginary dragons are quite likely to be used as ammunition against the very children he seeks to help.

synthetic phonics, dyslexia and natural learning

Too intense a focus on the virtues of synthetic phonics (SP) can, it seems, result in related issues getting a bit blurred. I discovered that some whole language supporters do appear to have been ideologically motivated but that the whole language approach didn’t originate in ideology. And as far as I can tell we don’t know if SP can reduce adult functional illiteracy rates. But I wouldn’t have known either of those things from the way SP is framed by its supporters. SP proponents also make claims about how the brain is involved in reading. In this post I’ll look at two of them; dyslexia and natural learning.


Dyslexia started life as a descriptive label for the reading difficulties adults can develop due to brain damage caused by a stroke or head injury. Some children were observed to have similar reading difficulties despite otherwise normal development. The adults’ dyslexia was acquired (they’d previously been able to read) but the children’s dyslexia was developmental (they’d never learned to read). The most obvious conclusion was that the children also had brain damage – but in the early 20th century when the research started in earnest there was no easy way to determine that.

Medically, developmental dyslexia is still only a descriptive label meaning ‘reading difficulties’ (causes unknown, might/might not be biological, might vary from child to child). However, dyslexia is now also used to denote a supposed medical condition that causes reading difficulties. This new usage is something that Diane McGuinness complains about in Why Children Don’t Learn to Read.

I completely agree with McGuinness that this use isn’t justified and has led to confusion and unintended and unwanted outcomes. But I think she muddies the water further by peppering her discussion of dyslexia (pp. 132-140) with debatable assertions such as:

“We call complex human traits ‘talents’”.

“Normal variation is on a continuum but people working from a medical or clinical model tend to think in dichotomies…”.

“Reading is definitely not a property of the human brain”.

“If reading is a biological property of the brain, transmitted genetically, then this must have occurred by Lamarckian evolution.”

Why debatable? Because complex human traits are not necessarily ‘talents’; clinicians tend to be more aware of normal variation than most people; reading must be a ‘property of the brain’ if we need a brain to read; and the research McGuinness refers to didn’t claim that ‘reading’ was transmitted genetically.

I can understand why McGuinness might be trying to move away from the idea that reading difficulties are caused by a biological impairment that we can’t fix. After all, the research suggests SP can improve the poor phonological awareness that’s strongly associated with reading difficulties. I get the distinct impression, however, that she’s uneasy with the whole idea of reading difficulties having biological causes. She concedes that phonological processing might be inherited (p.140) but then denies that a weakness in discriminating phonemes could be due to organic brain damage. She’s right that brain scans had revealed no structural brain differences between dyslexics and good readers. And in scans that show functional variations, the ability to read might be a cause, rather than an effect.

But as McGuinness herself points out reading is a complex skill involving many brain areas, and biological mechanisms tend to vary between individuals. In a complex biological process there’s a lot of scope for variation. Poor phonological awareness might be a significant factor, but it might not be the only factor. A child with poor phonological awareness plus visual processing impairments plus limited working memory capacity plus slow processing speed – all factors known to be associated with reading difficulties – would be unlikely to find those difficulties eliminated by SP alone. The risk in conceding that reading difficulties might have biological origins is that using teaching methods to remediate them might then called into question – just what McGuinness doesn’t want to happen, and for good reason.

Natural and unnatural abilities

McGuinness’s view of the role of biology in reading seems to be derived from her ideas about the origin of skills. She says;

It is the natural abilities of people that are transmitted genetically, not unnatural abilities that depend upon instruction and involve the integration of many subskills”. (p.140, emphasis McGuinness)

This is a distinction often made by SP proponents. I’ve been told that children don’t need to be taught to walk or talk because these abilities are natural and so develop instinctively and effortlessly. Written language, in contrast, is a recent man-made invention; there hasn’t been time to evolve a natural mechanism for reading, so we need to be taught how to do it and have to work hard to master it. Steven Pinker, who wrote the foreword to Why Children Can’t Read seems to agree. He says “More than a century ago, Charles Darwin got it right: language is a human instinct, but written language is not” (p.ix).

Although that’s a plausible model, what Pinker and McGuinness fail to mention is that it’s also a controversial one. The part played by nature and nurture in the development of language (and other abilities) has been the subject of heated debate for decades. The reason for the debate is that the relevant research findings can be interpreted in different ways. McGuinness is entitled to her interpretation but it’s disingenuous in a book aimed at a general readership not to tell readers that other researchers would disagree.

Research evidence suggests that the natural/unnatural skills model has got it wrong. The same natural/unnatural distinction was made recently in the case of part of the brain called the fusiform gyrus. In the fusiform gyrus, visual information about objects is categorised. Different types of objects, such as faces, places and small items like tools, have their own dedicated locations. Because those types of objects are naturally occurring, researchers initially thought their dedicated locations might be hard-wired.

But there’s also word recognition area. And in experts, the faces area is also used for cars, chess positions, and specially invented items called greebles. To become an expert in any of those things you require some instruction – you’d need to learn the rules of chess or the names of cars or greebles. But your visual system can still learn to accurately recognise, discriminate between and categorise many thousands of items like faces, places, tools, cars, chess positions and greebles simply through hours and hours of visual exposure.

Practice makes perfect

What claimants for ‘natural’ skills also tend to overlook is how much rehearsal goes into them. Most parents don’t actively teach children to talk, but babies hear and rehearse speech for many months before they can say recognisable words. Most parents don’t teach toddlers to walk, but it takes young children years to become fully stable on their feet despite hours of daily practice.

There’s no evidence that as far as the brain is concerned there’s any difference between ‘natural’ and ‘unnatural’ knowledge and skills. How much instruction and practice knowledge or skills require will depend on their transparency and complexity. Walking and bike-riding are pretty transparent; you can see what’s involved by watching other people. But they take a while to learn because of the complexity of the motor-co-ordination and balance involved. Speech and reading are less transparent and more complex than walking and bike-riding, so take much longer to master. But some children require intensive instruction in order to learn to speak, and many children learn to read with minimal input from adults. The natural/unnatural distinction is a false one and it’s as unhelpful as assuming that reading difficulties are caused by ‘dyslexia’.

Multiple causes

What underpins SP proponents’ reluctance to admit biological factors as causes for reading difficulties is, I suspect, an error often made when assessing cause and effect. It’s an easy one to make, but one that people advocating changes to public policy need to be aware of.

Let’s say for the sake of argument that we know, for sure, that reading difficulties have three major causes, A, B and C. The one that occurs most often is A. We can confidently predict that children showing A will have reading difficulties. What we can’t say, without further investigation, is whether a particular child’s reading difficulties are due to A. Or if A is involved, that it’s the only cause.

We know that poor phonological awareness is frequently associated with reading difficulties. Because SP trains children to be aware of phonological features in speech, and because that training improves word reading and spelling, it’s a safe bet that poor phonological awareness is also a cause of reading difficulties. But because reading is a complex skill, there are many possible causes for reading difficulties. We can’t assume that poor phonological awareness is the only cause, or that it’s a cause in all cases.

The evidence that SP improves children’s decoding ability is persuasive. However, the evidence also suggests that 12% – 15% of children will still struggle to learn to decode using SP. And that around 15% of children will struggle with reading comprehension. Having a method of reading instruction that works for most children is great, but education should benefit all children, and since the minority of children who struggle are the ones people keep complaining about, we need to pay attention to what causes reading difficulties for those children – as individuals. In education, one size might fit most, but it doesn’t fit all.


McGuinness, D. (1998). Why Children Can’t Read and What We Can Do About It. Penguin.