A recent Twitter discussion about systematic synthetic phonics (SSP) was sparked by a note to parents of children in a reception class, advising them what to do if their children got stuck on a word when reading. The first suggestion was “encourage them to sound out unfamiliar words in units of sound (e.g. ch/sh/ai/ea) and to try to blend them”. If that failed “can they use the pictures for any clues?” Two other strategies followed. The ensuing discussion began by questioning the wisdom of using pictures for clues and then went off at many tangents – not uncommon in conversations about SSP.
SSP proponents are, rightly, keen on evidence. The body of evidence supporting SSP is convincing but it’s not the easiest to locate; much of the research predates the internet by decades or is behind a paywall. References are often to books, magazine articles or anecdote; not to be discounted, but not what usually passes for research. As a consequence it’s quite a challenge to build up an overview of the evidence for SSP that’s free of speculation, misunderstandings and theory that’s been superseded. The tangents that came up in this particular discussion are, I suggest, the result of assuming that if something is true for SSP in particular it must also be true for reading, perception, development or biology in general. Here are some of the inferences that came up in the discussion.
You can’t guess a word from a picture
Children’s books are renowned for their illustrations. Good illustrations can support or extend the information in the text, showing readers what a chalet, a mountain stream or a pine tree looks like, for example. Author and artist usually have detailed discussions about illustrations to ensure that the book forms an integrated whole and is not just a text with embellishments.
If the child is learning to read, pictures can serve to focus attention (which could be wandering anywhere) on the content of the text and can have a weak priming effect, increasing the likelihood of the child accessing relevant words. If the picture shows someone climbing a mountain path in the snow, the text is unlikely to contain words about sun, sand and ice-creams.
I understand why SSP proponents object to the child being instructed to guess a particular word by looking at a picture; the guess is likely to be wrong and the child distracted from decoding the word. But some teachers don’t seem to be keen on illustrations per se. As one teacher put it “often superficial time consuming detract from learning”.
Cues are clues are guesswork
The note to parents referred to ‘clues’ in the pictures. One contributor cited a blogpost that claimed “with ‘mixed methods’ eyes jump around looking for cues to guess from”. Clues and cues are often used interchangeably in discussions about phonics on social media. That’s understandable; the words have similar meanings and a slip on the keyboard can transform one into the other. But in a discussion about reading methods, the distinction between guessing, clues and cues is an important one.
Guessing involves drawing conclusions in the absence of enough information to give you a good chance of being right; it’s haphazard, speculative. A clue is a piece of information that points you in a particular direction. A cue has a more specific meaning depending on context; e.g. theatrical cues, social cues, sensory cues. In reading research, a cue is a piece of information about something the observer is attending to, or a property of a thing to be attended to. It could be the beginning sound or end letter of a word, or an image representing the word. Cues are directly related to the matter in hand, clues are more indirectly related, guessing is a stab in the dark.
The distinction is important because if teachers are using the terms cue and clue interchangeably and assuming they both involve guessing there’s a risk they’ll mistakenly dismiss references to ‘cues’ in reading research as guessing or clues, which they are not.
Reading isn’t natural
Another distinction that came up in the discussion was the idea of natural vs. non-natural behaviours. One argument for children needing to be actively taught to read rather than picking it up as they go along is that reading, unlike walking and talking, isn’t a ‘natural’ skill. The argument goes that reading is a relatively recent technological development so we couldn’t possibly have evolved mechanisms for reading in the same way as we have evolved mechanisms for walking and talking. One proponent of this idea is Diane McGuinness, an influential figure in the world of synthetic phonics.
The argument rests on three assumptions. The first is that we have evolved specific mechanisms for walking and talking but not for reading. The ideas that evolution has an aim or purpose and that if everybody does something we must have evolved a dedicated mechanism to do it, are strongly contested by those who argue instead that we can do what our anatomy and physiology enable us to do (see arguments over Chomsky’s linguistic theory). But you wouldn’t know about that long-standing controversy from reading McGuinness’s books or comments from SSP proponents.
The second assumption is that children learn to walk and talk without much effort or input from others. One teacher called the natural/non-natural distinction “pretty damn obvious”. But sometimes the pretty damn obvious isn’t quite so obvious when you look at what’s actually going on. By the time they start school, the average child will have rehearsed walking and talking for thousands of hours. And most toddlers experience a considerable input from others when developing their walking and talking skills even if they don’t have what one contributor referred to as a “WEIRDo Western mother”. Children who’ve experienced extreme neglect (such as those raised in the notorious Romanian orphanages) tend to show significant developmental delays.
The third assumption is that learning to use technological developments requires direct instruction. Whether it does or not depends on the complexity of the task. Pointy sticks and heavy stones are technologies used in foraging and hunting, but most small children can figure out for themselves how to use them – as do chimps and crows. Is the use of sticks and stones by crows, chimps or hunter-gatherers natural or non-natural? A bicycle is a man-made technology more complex than sticks and stones, but most people are able to figure out how to ride a bike simply by watching others do it, even if a bit of practice is needed before they can do it themselves. Is learning to ride a bike with a bit of support from your mum or dad natural or non-natural?
Reading English is a more complex task than riding a bike because of the number of letter-sound correspondences. You’d need a fair amount of watching and listening to written language being read aloud to be able to read for yourself. And you’d need considerable instruction and practice before being able to fly a fighter jet because the technology is massively more complex than that involved in bicycles and alphabetic scripts.
One teacher asked “are you really going to go for the continuum fallacy here?” No idea why he considers a continuum a fallacy. In the natural/non-natural distinction used by SSP proponents there are three continua involved;
• the complexity of the task
• the length of rehearsal time required to master the task, and
• the extent of input from others that’s required.
Some children learn to read simply by being read to, reading for themselves and asking for help with words they don’t recognise. But because reading is a complex task, for most children learning to read by immersion like that would take thousands of hours of rehearsal. It makes far more sense to cut to the chase and use explicit instruction. In principle, learning to fly a fighter jet would be possible through trial-and-error, but it would be a stupidly costly approach to training pilots.
Technology is non-biological
I was told by several teachers that reading, riding a bike and flying an aircraft weren’t biological functions. I fail to see how they can’t be, since all involve human beings using their brain and body. It then occurred to me that the teachers are equating ‘biological’ with ‘natural’ or with the human body alone. In other words, if you acquire a skill that involves only body parts (e.g. walking or talking) it’s biological. If it involves anything other than a body part it’s not biological. Not sure where that leaves hunting with wooden spears, making baskets or weaving woolen fabric using a wooden loom and shuttle.
Teaching and learning are interchangeable
Another tangent was whether or not learning is involved in sleeping, eating and drinking. I contended that it is; newborns do not sleep, eat or drink in the same way as most of them will be sleeping, eating or drinking nine months later. One teacher kept telling me they don’t need to be taught to do those things. I can see why teachers often conflate teaching and learning, but they are not two sides of the same coin. You can teach children things but they might fail to learn them. And children can learn things that nobody has taught them. It’s debatable whether or not parents shaping a baby’s sleeping routine, spoon feeding them or giving them a sippy cup instead of a bottle count as teaching, but it’s pretty clear there’s a lot of learning going on.
What’s true for most is true for all
I was also told by one teacher that all babies crawl (an assertion he later modified) and by a school governor that they can all suckle (an assertion that wasn’t modified). Sweeping generalisations like this coming from people working in education is worrying. Children vary. They vary a lot. Even if only 0.1% of children do or don’t do something, that would involve 8 000 children in English schools. Some and most are not all or none and teachers of all people should be aware of that.
A core factor in children learning to read is the complexity of the task. If the task is a complex one, like reading, most children are likely to learn more quickly and effectively if you teach them explicitly. You can’t infer from that that all children are the same, they all learn in the same way or that teaching and learning are two sides of the same coin. Nor can you infer from a tenuous argument used to justify the use of SSP that distinctions between natural and non-natural or biological and technological are clear, obvious, valid or helpful. The evidence that supports SSP is the evidence that supports SSP. It doesn’t provide a general theory for language, education or human development.